South East Asian J. of Mathematics and Mathematical Sciences Vol. 19, No. 1 (2023), pp. 73-80

DOI: 10.56827/SEAJMMS.2023.1901.7
ISSN (Online): 2582-0850
ISSN (Print): 0972-7752

A NOTE ON HEINE'S TRANSFORMATION

Satya Prakash Singh and Akash Rawat
Department of Mathematics,
T.D.P.G. College, Jaunpur, Jaunpur - 222002, Uttar Pradesh, INDIA
E-mail : snsp39@gmail.com, arofficial26@gmail.com

(Received: Feb. 08, 2023 Accepted: Mar. 10, 2023 Published: Apr. 30, 2023)

Abstract: In this paper, making use of q-binomial theorem different generalizations of Heine's first transformation have been discussed.

Keywords and Phrases: Heine transformation, bi-basic and multi-basic series, Ramanujan's theta functions.
2020 Mathematics Subject Classification: 33D15, 33D65.

1. Introduction, Notations and Definitions

The q - rising factorial is defined as,

$$
(a ; q)_{0}=1, \quad(a ; q)_{n}=(1-a)(1-a q) \ldots\left(1-a q^{n-1}\right), \quad n \in(1,2,3, \ldots)
$$

where the parameter q is called the base and $|q|<1$.
The infinite q-rising factorial is defined as,

$$
(a ; q)_{\infty}=\prod_{r=0}^{\infty}\left(1-a q^{r}\right)=\lim _{n \rightarrow \infty}(a ; q)_{n}
$$

When k is complex number, we write

$$
(a ; q)_{k}=\frac{(a ; q)_{\infty}}{\left(a q^{k} ; q\right)_{\infty}}
$$

